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Abstract Large-eddy simulation (LES) of a turbulent channel flow is performed using
different subfilter-scale (SFS) models and test filter functions. The SFS models used are the
dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM). The DMM is a
linear combination between the scale-similarity model and the DSM. The test filler functions
investigated are the sharp cut-off (in spectral space) and smooth filter that is commutative up
to fourth-order. The filters are applied either in the homogeneous directions or in all three
spatial directions. The goverming equations are discretized wusing a fourth-order
energy-conserving finite-difference scheme. The influence from the test filter function and
the SES model on the LES results are investigated and the effect of two-dimensional versus
three-dimensional test filtering are investigated. The study shows that the combination of
SFS model and filter function highly influences the computational results; even the effect on
the zeroth-order moment is large.

Introduction

In large-eddy simulation (LES), a low-pass filter is applied to the governing
equations. This filtering procedure divides the flow field into resolved
scale motions and subfilter-scale (SFS) motions. The SFS motions consist of
scales that are damped by the filter function used and/or scales that are
smaller than the smallest resolved length scale (Carati et al., 2001; Gullbrand
and Chow, 2003).

The most commonly used LES approach is the implicitly filtered approach.
In implicitly filtered LES, the computational grid and the discretization
operators are considered as the filtering of the governing equations. The
advantage is that the procedure requires no implementation of filters.
The drawback is that the filter function used cannot be determined, which can
make SFS modeling more difficult.
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An alternative to implicitly filtered LES is to use explicit filtering. In the
explicit approach, a filter function is chosen and applied in the simulations.
Recently this approach has gained increased interest from the research
community (Gullbrand, 2002; Gullbrand and Chow, 2003; Stolz et al, 2001;
Winckelmans et al, 2001). The explicit filtering approach seems to be very
promising as computer capacity is increasing, but further investigations are
needed to make it applicable to flow fields of engineering interest.

In this paper, the implicitly filtered LES approach is used, since the study is
aimed at investigating dynamic modeling for flow fields of engineering
interest. The flow field investigated is the turbulent channel flow. The channel
flow 1s a simplified turbulent flow field, but it serves as a good test case since it
is well documented (Moser ef al, 1999) and has only one inhomogeneous
direction. Traditionally, in channel flow simulations, the homogeneous
directions of the flow field are used in the procedure for determining the
contribution from the dynamic model. Flow fields of engineering interest
usually involve complex geometries where there is no homogeneous direction.
Therefore, an alternative procedure must be used where the three
dimensionality of the flow field needs to be considered in the modeling
procedure. This paper presents a detailed investigation of the effects of using a
three-dimensional test filter in the dynamic procedure, as well as the effect of
using the same filter as a local averaging of the dynamic coefficient to prevent
numerical instability. The difficulty of creating a model for the resolved SFS
motions in implicitly filtered LES is also addressed.

First, three-dimensional test filtering in the dynamic modeling of the SFS
stresses is investigated. The influence of test filtering in the inhomogeneous
direction is important to determine since, its effect also enters into the predicted
results of more complex flow fields. The impact from three-dimensional test
filtering i1s studied by comparing the results to those predicted by using
two-dimensional filtering. To determine appropriate filter functions for
filtering in inhomogeneous directions, special care is needed to avoid
introducing commutation errors into the simulations (Ghosal, 1995; Ghosal and
Moin, 1995). Therefore, a general theory for constructing discrete filters that
commute up to desired order was developed by Vasilyev et al (1998).
To minimize the commutation error in the inhomogeneous direction, a filter
function that is commutative to at least the same order as the numerical scheme
used is needed. The effect of these high-order commutative filter functions on
the LES results still needs to be determined. Earlier investigations on the
influence of different filter functions on LES results focused on
two-dimensional test filters which do not need to be commutative (Lund and
Kaltenbach, 1995; Najjar and Tafti, 1996; Piomelli ef al, 1988; Sarghini ef al,
1999). A commutative test filter function is used in the simulations presented in
this study to examine the effect of three-dimensional filtering without
introducing commutation errors. Furthermore, the effect from the commutative



filters on the SKFS stresses needs to be determined. This is investigated by
performing a simulation applying a commonly used test filter function
(the sharp cut-off filter) and comparing the results to those obtained using
the commutative filter function.

Two dynamic SFS models are applied in this study: the dynamic
Smagorinsky model (DSM) by Germano et al. (1991) and the dynamic mixed
model (DMM). The DMM used here is a linear combination of the
scale-similarity model (SSM) by Liu et al (1994) and the DSM. In DSM, a
test filter function is used to determine the dynamic coefficient, and the
coefficient is traditionally averaged in the homogeneous directions of the
channel flow. The test filter function commonly used is a sharp cut-off filter
(in spectral space) in the homogeneous directions. Since a sharp cut-off filter is
difficult to apply in more general flow cases, the influence of using a smooth
test filter needs to be determined. Furthermore, the test filter function chosen is
a reflection of the assumption of the implicit filter function. The dynamic
procedure is based upon a similarity assumption which requires the test filter
function to be similar to the implicit filter (Carati and Eijnden, 1997). The
difficulty with the implicitly filtered LES approach is that the shape of the
implicit filter function is unknown and therefore, an appropriate test filter
function cannot be chosen. In the explicitly filtered LES approach, the filter
function applied to the governing equations is known and the resolved SFS
part can therefore be reconstructed (Gullbrand and Chow, 2003). This is not
applicable in implicitly filtered LES and therefore a model is needed for the
resolved SFS part. Note that an SFS model for the resolved stresses is only
valid when assuming the implicit filter function to be a smooth filter function.
When applying a sharp cut-off filter, all the motions that are larger than the
cut-off length-scale are assumed to be resolved. In this paper, the SSM by Liu
et al. (1994) is used as a first approximation of an appropriate SFS model for the
resolved SFS part.

Finally, the effect of the averaging procedure applied to the dynamic model
coefficient is evaluated. In DSM, the model coefficient is calculated dynamically
during the entire simulation. However, the coefficient value may vary rapidly
in the computational domain leading to numerical instability. To avoid this
problem, Germano ef al. (1991) suggested averaging the model coefficient in the
homogeneous directions of the channel flow. This averaging procedure may
not be feasible in flow fields of engineering interest and the coefficient may
need to be averaged locally. Ghosal et al (1995) proposed a dynamic
localization model to avoid the problem. However, this is a rather complicated
method, which involves solving an additional integral equation. Therefore, in
the investigation presented, a simple approach is examined where the dynamic
coefficient is averaged locally with the test filter function used. It is an easy
approach which does not require implementation of any additional filter
function or procedure. This averaging procedure was earlier proposed by
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Zang et al (1993), and applied to a recirculating flow field. However, the
influence on the LES results from the locally averaged and homogeneously
averaged model coefficient need to be determined.

The simulations presented in this paper are performed with a fourth-order
finite-difference scheme in addition to using a fourth-order commutative filter
function. The SFS models typically use information from the smallest resolved
length scales to model the SFS contribution. It is therefore of great importance,
that these resolved length scales are captured accurately. This requires that the
numerical error of the scheme be sufficiently small and thereby the use of
high-order discretization and a high-order commutative filter function. All the
LES results are compared to DNS data by Moser et al. (1999).

Governing equations
In LES, the governing equations are filtered in space. The low-pass filter
function G is applied to the flow variable f

oA ) = / " G, 2, A 1) M

where A is the filter width.
The governing equations for incompressible flows are the filtered continuity
equation and the Navier-Stokes, written as
ol
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where u; denotes velocity vector, p pressure, and Re, the Reynolds number
based upon the friction velocity and channel half-width. 7; is the SFS stress
tensor defined as 7; = w;u; — it;ii;.

The SFS stress tensor includes the turbulence motions from scales that are
damped by the filter function and/or scales that are smaller than the grid size
resolution (Carati et al, 2001). In implicitly filtered LES, both damped
turbulence motions and unresolved motions need to be modeled. This is done
with SFS models.

Subfilter-scale models

Since implicitly filtered LES are used in the simulations presented, both
resolved and unresolved SFS stresses need to be modeled. On the other hand,
in explicitly filtered LES, the resolved SFS stresses can be reconstructed by an
inverse filtering procedure. Different approximations in the inverse filtering



procedure have been proposed in the literature (Chow and Street, 2002; Stolz
et al., 2001), and one of the models that can be obtained from this procedure is
the SSM by Bardina et al (1980). In the explicit filtering approach, even though
a model is used for the resolved SFS stresses, the unresolved SFS stresses must
still be modeled. The unresolved SFS stresses contain motions that are smaller
than the smallest resolved length scale. This term is usually denoted as the
sub-grid scale (SGS) stresses. Note that the SSM by Bardina et al. (1980)
requires the use of explicit filtering.

The SSM by Liu et al. (1994) is used in these simulations as the model for the
resolved SFS stresses, while the DSM is used for the unresolved stresses. Since
an SFS model cannot be reconstructed for the resolved stresses, the SSM by Liu
et al. (1994) is chosen as it is similar to the model by Bardina et al (1980). Both
models are based upon a similarity assumption, but the model by Liu ef al.
(1994) uses information from length scales larger than in the model by Bardina

et al. (1980). The SSM by Liu et al. is written as (ﬁﬂ_t]’ - ﬁiﬁj) , where the tophat

symbol (7) denotes filtering with a test filter function with larger filter width
than the implicit filter. The total expression for the SFS stresses with both
scale-similarity term and DSM is

T = Wity — Wil — Z(CSA)2|S|Si]‘,
where C; is the dynamic model coefficient in the DSM and Sj;, is the strain rate
tensor. A coefficient could be placed in front of the scale-similarity term,
however this is not investigated in this work and is left for future studies.

The dynamic procedure in the DSM uses the same test filter function as
in the SSM by Liu et al. (1994) to determine the model coefficient. In the
simulations, it is the (C;A)? term that is calculated dynamically. The advantage
of solving for (C.A)? instead of only Cy is to avoid the ambiguity in determining
the filter width used in the DSM when stretched meshes are used (Scotti ef al.,
1996). When solving for (C;A)?, it is only the ratio between the test filter width
and the implicit filter that is employed. The least-square approximation by
Lilly (1992) is used to solve the six independent equations to obtain one model
coefficient. To simplify the notation used in this paper, the (C:A)? term is
hereafter denoted as C.

To avoid numerical instabilities, the dynamic model coefficient is usually
averaged in the homogeneous directions of the channel flow (Germano et al.,
1991). This averaging procedure, denoted with (C), is compared to a locally
averaged procedure. The local averaging is performed by filtering the
coefficient using the test filter function (C). This local averaging was earlier
used by Zang et al. (1993), but they used another test filter function in their
simulations. The local averaging of the coefficient 1s of interest when more
complex flow fields are considered, and to the authors knowledge there has
been no comparisons between the two methods in order to determine the
impact on the LES results from each averaging procedure.
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Figure 1. R

Filter function G(k) as a
function of the
wavenumber %

In the simulations, the total eddy viscosity is clipped, if the value from the
DSM is largely negative. The criteria used is the same as applied by Zang et al.
(1993) that prevents the total eddy viscosity from becoming negative:

Viotal = VDSM T Vmolecular

Filters
Two test filters, i.e. one fourth-order commutative filter function and one sharp
cut-off filter, are used in the simulations. The simulations are performed using
a fourth-order finite-difference scheme and therefore, in order to minimize
the commutation error, a filter function that is at least commutative up to
fourth-order is needed. In the channel flow case, it is only in the inhomogeneous
direction of the flow that a commutation error might be introduced. The
fourth-order commutative filter was developed using the theory proposed by
Vasilyev et al. (1998).

The two test filter functions are shown in spectral space in Figure 1. In
physical space, the discrete fourth-order commutative filter is

. 1 9 1 9 1
¢ =~ a5 bi-s + a5 bin1 T 5 b+ 35 bin — 35 i, ©)

where the filter weights for ¢, are zero.

In the simulations, the filter functions are employed only when calculating
the SFS contribution. A test filter is used in the dynamic procedure of the DSM
and when determining the contribution from the SSM part (Liu et al, 1994).
The commutative filter function is used both in two-dimensional test filter
cases and three-dimensional ones. The sharp cut-off filter is used only in the
two-dimensional filter studies. Note that when using the sharp cut-off filter in
the DMV, the contribution from the SSM vanishes and only the contribution
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from the DSM remains. Therefore, the DMM is not used with the sharp cut-off
filter.

The ratio between the test filter width and the computational cell size is
chosen to be Aest/Agia = 2. This is the value that was recommended by
Germano et al. (1991) for the test filter width in the DSM. For the fourth-order
commutative filter function, the filter width is determined by where G(k) = 0.5

and as seen in Figure 1, kA /7 = 0.5 at this location. This corresponds to an
effective filter width of 2A (Lund, 1997).

Solution algorithm

The space derivatives in the governing equations are discretized using a
fourth-order finite-difference scheme on a staggered grid. The convective terms
are discretized in a skew-symmetric form to ensure conservation of turbulent
kinetic energy (Morinishi ef al, 1998; Vasilyev, 2000). The equations are
integrated in time with the third-order Runge-Kutta scheme described by
Spalart et al. (1991). The diffusion terms in the wall-normal direction are treated
implicitly with the Crank-Nicolson scheme to ease the constraint on the time
step of the scheme. The splitting method of Dukowicz and Dvinsky (1992) is
used to enforce the solenoidal condition. The resulting discrete Poisson
equation of pressure is solved using a penta-diagonal direct matrix solver in
the wall-normal direction and a discrete Fourier transform in the
homogeneous/periodic directions. Periodic boundary conditions are applied
in the streamwise and spanwise directions, while no slip conditions are applied
at the walls. A fixed mean pressure gradient is used in the streamwise
direction. An evaluation of the fourth-order energy-conserving scheme and

a comparison with a second-order conservative scheme are reported by
Gullbrand (2000) and Gullbrand and Chow (2003).

Turbulent channel flow simulations

The Reynolds number of the turbulent channel flow is Re, = 395 and the
computational domain is (27, 2k, 7h) in the streamwise (x), wall-normal (y)
and spanwise (z) directions, respectively. A computational grid resolution of
(36, 37, 36) is used. The grid is stretched in the wall-normal (7) direction
according to

tanh<7<l\2/_2 B 1>> j=0,...,No

tanh(y) ’ ©

() =

where N is the number of grid points in the j-direction and vy is the stretching
parameter. In the simulations, y=2.75 is used. The grid resolution
corresponds to AxT =69, 0.5 = Ay* = 56 and Az* = 34 when normalized
with the friction velocity and the kinematic viscosity. This resolution is very
coarse and is near the limit of where LES is expected to perform well. However,
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the coarse resolution is chosen because of the additional challenge it brings
to the SF'S models. As the resolution decreases, an increased emphasis is put on
the models as an increasing portion of the energy spectrum is not resolved and
therefore has to be modeled. In flow fields of engineering interest, fine
resolution is often not feasible due to the complexity of the flow and the long
computational times associated with LES. By using a coarse computational
grid, larger emphasis is also put on the numerical scheme. A statistically
stationary solution is obtained after 60 dimensionless time units and thereafter,
statistics are sampled during 30 time units. The time is normalized by the
friction velocity and the channel half-width. The statistics are compared to the
unfiltered DNS data of Moser et al. (1999). The LES results are averaged in time
and in the homogeneous direction if not stated otherwise.

In order to verify that the results presented in this study is not an artifact of
too coarse grid resolution, the same simulations were performed using a
resolution of (64, 49, 48). This resolution is a quarter of the DNS resolution in
each spatial direction. The same trends were observed in the LES results for
both resolutions; (36, 37, 36) and (64, 49, 48). However, the differences in the
results predicted by the different models were smaller on the finer grid
resolution. As the resolution increases more length scales are resolved and
therefore, less influence is expected from the models on the LES results.

Results

The LES results predicted by the DSM and the DMM are presented in this
section. The test filtering is performed in two or three dimensions. The sharp
cut-off filter is used only for the two-dimensional test filtering, while the
fourth-order commutative filter function is applied in both two and three
dimensions. The LES results are compared to DNS data for mean velocity
profiles and reduced (deviatoric) turbulence intensities. Note that these
turbulence intensities are adjusted by removing the trace from each tensor
component, as discussed by Winckelmans et al. (2002). The values predicted
by the SFS models are compared between the different simulations for the
dynamic model coefficient, eddy viscosity, and modeled shear stress.

Two-dimensional test filtering

In this section, the test filter is applied only in the homogeneous directions (x, z).
Both sharp cut-off filter and fourth-order commutative filter have been used to
calculate the contribution from the SFS models.

The DSM versus the DMM. As seen in Figure 2, the mean velocity profiles
predicted by the DSM with the sharp cut-off test filter and the DMM
(commutative test filter) are relatively close to the the DNS data. The mean
velocities predicted by the LES all over-predict the velocity in the log-law
region. The difference between the DMM and the DSM with the sharp cut-off



filter is small. The largest over-prediction is predicted by the DSM with the
commutative filter.

While the DSM with the sharp cut-off filter predicts the best velocity profile,
the reduced turbulence intensities predicted by the DMM are closer to the DNS
data (Figure 3). The absolute value of the intensities predicted by the LES are
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Figure 2.

Mean velocity profiles
using two-dimensional
test filtering and grid
resolution (36, 37, 36)

Figure 3.

Reduced turbulence
intensities in streamwise
u'u', wall-normal v'v’,
and spanwise w'w’
directions using
two-dimensional test
filtering and grid
resolution (36, 37, 36)
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Figure 4.

Model parameter (C)
predicted by the DSM
using two-dimensional
test filtering and grid
resolution (36, 37, 36)

Figure 5.

Eddy viscosity v,
predicted by the DSM
using two-dimensional
test filtering and grid
resolution (36, 37, 36)

all larger than the DNS results. As shown for the mean velocity profiles, the
worst results are predicted by the DSM when used with the commutative filter
function.

Figure 4 shows the dynamic model coefficient predicted by the DSM. The
value of the coefficient increases as the test filter function changes from the
sharp cut-off filter to the commutative filter. Using the commutative test filter,
the DSM predicts smaller coefficient values when used in combination with the
SSM. The same trend as observed for (C) is also seen for the eddy viscosity,
vpsm = C|S| (Figure 5). This indicates that the absolute value of the strain rate
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is not very different in the simulations. Therefore, the increased eddy viscosity
predicted by the DSM when used with the commutative test filter seems to be
mainly an effect of the increased value of the model coefficient.

Figure 6 shows the modeled shear stress 715, where index 1 denotes the
x-direction and 2 the y-direction. The DMM predicts the largest modeled shear
stress and the SSM portion of the model contributes with the largest stress.
Actually, the SSM stress is more than twice as large as the DSM contribution.
When the DSM is used alone, the predicted shear stress increases, when used
with the commutative test filter compared to the sharp cut-off filter.

The results presented in this section, indicate that the increased
over-prediction of the mean velocity profile and reduced turbulence
intensities predicted by the DSM are a result of the increased value of the
dynamic model coefficient. The model coefficient increases when the test filter
is smooth compared to when the sharp cut-off filter is used. The SSM seems to
be a relatively good model of the resolved SFS stresses in the DMM. When
studying the turbulence intensities, the DMM even predicts results better than
the DSM when used with the sharp cut-off filter, despite the fact that the DSM
with the sharp cut-off filter is a model that is known to predict good results in
the channel flow simulations.

The DSM: homogeneous averaging versus local averaging. In this section, the
concept of averaging the model coefficient in the DSM in either the
homogeneous directions or locally (by using the test filter function) is studied.
When averaging in the homogeneous directions, the computational data in the
whole plane (streamwise and spanwise directions) are used. By using the test
filter, only the closest computational grid points are used in the averaging
procedure. The stencil of the filter function determines the number of grid
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SSM contribution, and upper curve: total contribution
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Figure 6.

Modeled shear stress 72
using two-dimensional
test filtering and grid
resolution (36, 37, 36)
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Figure 7.

Mean velocity profiles
using two-dimensional
test filtering and grid
resolution (36, 37, 36)

points that are involved in the averaging. Therefore, the test filter function
results in a local averaging of the model coefficient. The term local averaging is
used to describe the model coefficient averaged with the test filter function. The
study is performed for the DSM when used with the commutative filter
function only.

The comparison of the mean velocity profiles for the two different averaging
procedures is shown in Figure 7. The mean velocity profile in the log-law
region improves significantly when the local averaging of the model coefficient
is applied. The results from using the local averaging are comparable to the
ones predicted using the sharp cut-off filter shown in Figure 2.

The reduced turbulence intensities are also improved when local averaging
is used compared to the homogeneous averaging (Figure 8). The peak value of
the turbulence intensities when using local averaging are comparable to the
DMM results in Figure 3, and both DSM local averaging and DMM are close to
the DNS predictions. However, the peaks of the turbulence intensities are
broader for the DSM with local averaging than for the DMM results.

An instantaneous spanwise profile of the model coefficient C in the DSM is
shown in Figure 9. The data is calculated a priori from an instantaneous flow
field where no SFS models have been used. Large fluctuations in the value of
the model coefficient and large negative values may result in numerical
instabilities. Therefore, it is of interest to reduce the peaks or smooth them out.
The two procedures investigated here are filtering the coefficient using the test
filter function or averaging the coefficient in the homogeneous directions.
The results from both procedures is seen in Figure 9. In the simulations,
small negative values are allowed while large negative values are clipped.
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Figure 8.

Reduced turbulence
intensities in streamwise
u'u’, wall-normal v'v’
and spanwise w'w’
directions using
two-dimensional test
filtering and grid
resolution (36, 37, 36)

Figure 9.

Model parameter Cin the
DSM calculated from an
instantaneous flow field
in the center of the
domain using
two-dimensional test
filtering and grid
resolution (36, 37, 36)
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Figure 10.

Model parameter Cin the
DSM in the center plane
of the domain calculated
from an instantaneous
flow field using
two-dimensional test
filtering and grid
resolution (36, 37, 36)

Figure 11.

Eddy viscosity v, from
the DSM using
two-dimensional test
filtering and grid
resolution (36, 37, 36)

The clipping value is chosen to be —1/Re,, in order to avoid negative
dissipation in the momentum equations.

Variations of locally averaged model coefficient is shown in a horizontal
cross-section in Figure 10. Regions of positive and negative values of the model
coefficient are observed.

The value of the predicted eddy viscosity is larger when using local
averaging (Figure 11). In the center part of the channel flow (y* > 100), an
almost constant relation i1s observed between the two eddy viscosities,
however, the curves deviate from each other close to the wall.
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Figure 12 shows a larger peak value of the modeled SFS shear stress when local
averaging is used compared to the homogeneously averaged one. Otherwise,
the shape of the curves are very similar.

By allowing the model coefficient to fluctuate in the plane, the locally
averaged DSM predicts the mean velocity profile and peak values of turbulence
intensities that are very similar to what is predicted by the DMM. Larger local
fluctuations are introduced by the local averaging that seem to be comparable
to the DMM results, even though the modeled shear stresses are very different
between the two simulations.

Three-dimensional filtering
In this section, three-dimensional test filtering using a fourth-order
commutative filter function is applied when calculating the SFS stresses.

The DSM versus the DMM. As shown in Figure 13, the DSM with the
three-dimensional test filtering over-predicts the mean velocity profile in
the log-law region, while the DMM is unable to capture the log-law behavior in
the center of the channel. The mean velocity profile predicted by the DMM
starts to deviate from the log-law just below y™ = 100. This is due to the
three-dimensional filtering of the SSM, indicating that the resolution in the
wall-normal direction is too coarse in the center of the channel for the SSM.
When the grid resolution is doubled in the wall-normal direction, the results are
improved greatly. The results are also improved if the coarse grid resolution is
used and the test filtering of the SSM is performed only in the two
homogeneous directions. Using the finer grid resolution in the wall-normal
direction or the two-dimensional filtering of the SSM, the mean velocity profile
is very close to the DNS results. Since the LES results are expected to improve,
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Figure 12.

Modeled shear stress 72
using two-dimensional
test filtering and grid
resolution (36, 37, 36)
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Figure 13.

Mean velocity profiles
using three-dimensional
test filtering
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Note: :DNS data, —— : DMM using fourth-order commutative
two-dimensional filtering of SSM and three-dimensional filtering of DSM
and grid resolution (36,37,36), ------ : DMM using fourth-order commutative
filter and grid resolution (36,73,36), — —— : DSM using fourth-order
commutative filter and grid resolution (36,37,36), - —-—- : DMM using

fourth-order commutative filter and grid resolution (36,37,36), and - —-- —-
: DSM using fourth-order commutative filter and grid resolution (36,73,36)

as the resolution is refined, the DSM with the finer grid resolution in the
wall-normal direction is performed for comparison purposes. The DSM using
the finer grid predicts a mean velocity profile that is similar to the DMM on the
coarser grid in the near wall region. The DSM shows no difficulties in
capturing the log-law region for either grid resolution. However, for the finer
grid resolution the mean velocity profile predicted by the DMM is closer to the
DNS data than the DSM results.

The peak values of the turbulence intensities are fairly well captured by the
DMM (Figure 14), even though the DMM breaks down in the center of the
channel. The turbulence intensities predicted by the DMM show a small bump
after y* = 100, for all intensities. The bump is clearly seen in the predicted
spanwise intensity. As for the DSM, the turbulence intensities in all three
directions are very similar to the ones predicted using two-dimensional test
filtering. The intensities predicted when using the DMM with the finer
wall-normal resolution or the DMM using the coarse grid and two-dimensional
test filtering of the SSM, both show good agreement with the DNS data. The
DSM with the fine wall-normal resolution does not show large improvements
in the turbulence intensities predicted. Therefore for the DSM, large
over-prediction of the intensities seems to depend upon the resolution in the
homogeneous directions to a larger degree, than the wall-normal resolution.

The value of the dynamic model coefficient is smaller when used in the DMM
as shown in Figure 15. The same observation was made for the coefficient
when two-dimensional test filtering was applied. However, the model
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Note: :DNS data, : DMM using fourth-order commutative
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and grid resolution (36,37,36), : DMM using fourth-order commutative
filter and grid resolution (36,73,36), — — — : DSM using fourth-order
commutative filter and grid resolution (36,37,36), : DMM using
fourth-order commutative filter and grid resolution (36,37,36), and
: DSM using fourth-order commutative filter with grid resolution (36,73,36)

coefficient for the DMM when using the coarse grid and three-dimensional
filtering shows a rather strange behavior. The value of the coefficient becomes
negative on an average. When the resolution is increased or two-dimensional
filtering of the SSM is applied, the shape of the curves for the model coefficient
are closer to those previously seen in Figure 4. By increasing the wall-normal
resolution, the value of the model coefficient is decreased in the center of the
channel and its predicted peak value is closer to the wall. Even though the
value of the model coefficient is very similar in the two cases (increased grid
resolution or filtering of the SSM in two dimensions), the finer resolution results
in a smaller eddy viscosity (Figure 16). This is due to the fact that the finer grid
resolution resolves more length scales and therefore, the effect from the SFS
model is reduced. The same behavior is observed for the DSM as the grid
resolution is increased in the wall-normal direction. The eddy viscosity
predicted by the DMM shows the same peculiar behavior as observed for the
model coefficient on the coarse resolution. The largest eddy viscosity is
predicted by the DSM.

The largest contribution to the modeled shear stress is predicted by the
DMM where the SSM part is considerably larger than the DSM portion as
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Figure 14.

Reduced turbulence
intensities in streamwise
u'u!, wall-normal v'v' and
spanwise w'w' directions
using three-dimensional
test filtering
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Figure 15.

Model parameter (C)
from the DSM using
three-dimensional test
filtering

Figure 16.

Eddy viscosity
contribution from the
DSM using
three-dimensional test
filtering
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filtering of SSM and three-dimensional filtering of DSM and grid resolution
(36,37,36), -------- : DMM using fourth-order commutative filter and grid
resolution (36,73,36), — — — : DSM using fourth-order commutative filter
and grid resolution (36,37,36), - —- —- : DMM using fourth-order
commutative filter and grid resolution (36,37,36), and -—--—- :DSM using
fourth-order commutative filter with grid resolution (36,73,36)
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Note: : DMM using fourth-order commutative two-dimensional
filtering of SSM and three-dimensional filtering of DSM and grid resolution
(36,37,36), -------- : DMM using fourth-order commutative filter with grid
resolution (36,73,36), — — — : DSM using fourth-order commutative filter
and grid resolution (36,37,36), - —- —- : DMM using fourth-order
commutative filter and grid resolution (36,37,36), and -—--—- :DSM using
fourth-order commutative filter with grid resolution (36,73,36)



shown in Figure 17. The figure explains the strange behavior of the model
coefficient and the eddy viscosity, Figures 15 and 16, respectively, in the DMM
for the coarse resolution and three-dimensional test filtering. The SSM predicts
too large shear stress in the center of the flow field (above y © = 100). The shear
stress predicted by the DSM rapidly decreases to reduce the total influence
from the DMM. However, the reduction in the DSM is not enough to counteract
the influence from the SSM. The eddy viscosity predicted is prevented from
becoming largely negative because of the clipping procedure to avoid negative
total viscosity. Therefore, the DSM is not able to fully counteract the behavior
of the SSM or have a larger influence on the results. For the DSM used alone,
the fine grid resolution in the wall-normal direction results in a smaller shear
stress predicted.

The DSM: homogeneous averaging versus local averaging. Local averaging
in three dimensions of the model coefficient in the DSM reduces the
over-prediction of the mean velocity profile compared to homogeneous
averaging (Figure 18). The same trend was observed in the results for the
two-dimensional test filtering. However, for the three-dimensional test filtering,
the relative improvement of the velocity profile when using local averaging
is smaller, because the results of the DSM using homogeneous averaging are
improved initially when three-dimensional test filtering is applied. The mean
velocity profiles predicted using local averaging show very small dependence
upon two-dimensional or three-dimensional test filtering (compare
Figures 7 and 18).
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Figure 17.
Modeled shear stress 7
using three-dimensional
test filtering
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Figure 18.

Mean velocity profiles
using three-dimensional
test filtering and grid
resolution (36, 37, 36)

Figure 19.

Reduced turbulence
intensities in streamwise
u'u, wall-normal v'v/ and
spanwise w'w’ directions
using three-dimensional
test filtering and grid
resolution (36, 37, 36)
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commutative filter and homogeneous averaging, and - —-- —-
: DSM using fourth-order commutative filter and local averaging

The turbulence intensities are improved when using three-dimensional local
averaging of the model coefficient in the DSM, (Figure 19). However, the
turbulence intensities predicted by local averaging and test filtering in two
dimensions (Figure 8) are closer to the DNS data than the results predicted by
using three-dimensional test filtering. The peak values are higher and are
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broader when using local averaging and three-dimensional test filtering
compared to the two-dimensional test filtered results. The turbulence
intensities predicted by the DSM using homogeneous averaging of the model
parameter are almost identical when test filtering is performed in either two
dimensions or three dimensions.

The eddy viscosity predicted when using local averaging shows a sharper
gradient in the near wall region (Figure 20). Otherwise, the maximum value of
the eddy viscosity is not very different in the two simulations. The eddy
viscosity predicted by the local averaging and two-dimensional test filtering is
larger than the homogeneously averaged results (Figure 11), but this is not
observed in the results when using three-dimensional test filtering. However,
when the three-dimensional test filtering and local averaging are applied, the
eddy viscosity fluctuates in the near wall region. This behavior was not
observed for the two-dimensional filtering. The eddy viscosity increases in the
first three grid points from the wall while lower viscosity is calculated in the
next two points. In the first three grid points in the wall-normal direction,
asymmetric commutative filter functions are used. A symmetric filter
(equation (5)) is used in the rest of the flow field. The jump in the eddy
viscosity corresponds to the change from the asymmetric filters to the
symmetric one. This dependence is not observed when homogeneous
averaging of the model parameter is used. However, the change from
asymmetric to symmetric filter does not influence the computed results.
A simulation was performed where the eddy viscosity was set to zero in the
first three grid points. No effect was seen in the presented results. As long as
the grid resolution is fine enough in the near wall region, the filters used there
do not influence the results.
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Figure 20.

Eddy viscosity v,
contribution from the
DSM using
three-dimensional test
filtering and grid
resolution (36, 37, 36)
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Figure 21.

SGS shear stress 715 from
the DSM using
three-dimensional test
filtering and grid
resolution (36, 37, 36)

The peak value of the SFS shear stress is larger when local averaging is used
(Figure 21). The near wall behavior observed in Figure 20 is also seen in the
predicted shear stresses. For the shear stress, the same trend is observed for
three-dimensional test filtering as for the two-dimensional one, that the peak
value of the stresses predicted are larger when local averaging is used
compared to the homogeneously averaged case. However, the values of the
stresses are lower in the three-dimensional local averaging case when
compared to the results using two-dimensional test filtering.

Discussion and conclusions

An investigation has been performed using dynamic modeling in LES using
two- and three-dimensional test filtering in turbulent channel flow. The results
of this study are intended for application to flow fields of engineering interest
where it 1s of great importance to determine the influence of three-dimensional
test filtering on the predicted LES results. The LES approach used is the
implicitly filtered procedure, which is the most commonly used approach. In
implicitly filtered LES, the computational grid and the discretization operators
are considered to be the filtering of the governing equations. The test filtering
is employed only in the dynamic modeling of the SFS stresses. Most test
filtering in channel flow simulations has been performed only in the
homogeneous directions, which is not applicable to complex geometries. In
order to minimize the commutation error from test filtering in the
inhomogeneous direction, a fourth-order commutative filter function is used.
The commutative filter is a smooth filter function. A sharp cut-off filter is used
in the investigation for comparison purposes. The implicit filter used in the
simulations cannot be determined and the test filter function employed reflects
the assumption of the shape of the implicit filter.
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The dynamic SFS models used in the simulations are the DSM by Germano
et al. (1991) and the DMM, which is a linear combination of the SSM by Liu ef al.
(1994) and the DSM. The unresolved SFS stresses are modeled by the DSM,
while the resolved SFS stresses are modeled by the SSM. Another aim of this
work was to investigate whether the SSM by Liu et al. (1994) is an appropriate
model for the resolved SFS stresses. The LES results predicted by the dynamic
models using two- or three-dimensional test filtering are compared. The sharp
cut-off filter is applied only in the two-dimensional test filtering, while the
fourth-order commutative filter is applied using both two-dimensional and
three-dimensional test filtering.

For two-dimensional test filtering, the DMM performs very well. The
mean velocity profile predicted by the DMM is very similar to the profile
by the DSM with the sharp cut-off filter. The DSM with the cut-off filter is
known to produce good results in turbulent channel flows (Germano et al,
1991; Piomelli et al, 1988). Furthermore, a large improvement is observed
for the turbulence intensities when using the DMM. The DSM with the
commutative test filtering predicts results that deviate from the DNS data.

When using three-dimensional test filtering, the DMM also performs well
as long as the grid resolution in the wall-normal direction is fine enough.
The DMM requires a finer resolution in the wall-normal direction than
the DSM to capture the log-law region of the mean velocity profile. It is the
three-dimensional test filtering of the SSM portion that destroys the
log-region. Even though the mean velocity profile is not correctly captured
in the DMM results, the peak values of the turbulence intensities (in the
near wall region) are well captured. The DSM again predicts results that
differ to the DNS results when used with the three-dimensional
commutative filter function. However, using a three-dimensional
commutative test filter with the DSM, improves the mean velocity
profiles when compared to the two-dimensional case. The improvements are
not observed in the turbulence intensities which show almost no difference
between two- or three-dimensional filtering.

The large deviation between the DNS data and the DSM results when using
the fourth-order commutative filter function shows the need to use an SFS
model for the resolved SFS stresses. The same trend is observed for both two-
and three-dimensional test filtering. The increased value of the model
coefficient in the DSM caused by using the smooth commutative test filter
seems to be the reason for the increased disagreement between the LES results
and the DNS data. The value of the model coefficient increases when used with
the commutative test filter and this results in an increased eddy viscosity. The
larger eddy viscosity enhances the over-prediction of both mean velocity profile
and turbulence intensities.

The simulations using the DMM indicate that the SSM by Liu et al. (1994) is
a very promising model for the resolved SFS stresses. The requirement for the
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DMM to predict reasonable results is that the grid resolution is fine enough in
the inhomogeneous direction. The concept of using a model parameter in the
expression of the SSM needs to be investigated, but is left for future
investigations.

The dynamic model coefficient is usually averaged in the homogeneous
directions (Germano et al, 1991), but since this averaging procedure is not
always feasible, there is great interest to investigate how local averaging of the
model coefficient affects the LES results. In this study, the local averaging was
performed by filtering the coefficient using the commutative test filter function.
The study is limited to the influence of the averaging procedure on the LES
results predicted by the DSM when used with the fourth-order commutative
test filter.

The simulations show that local averaging of the dynamic model coefficient
improves the predicted LES results. The local averaging allows the coefficient
to vary in the homogeneous directions, and it has a favorable impact on the
predicted LES results. It is interesting to note that the use of a simple procedure
such as local averaging has a significant impact on the results. Most likely,
allowing the model coefficient to vary in the plane aids the break-up of large
structures that are predicted in the near wall region. This allows the log-law
region in the predicted mean velocity profile to approach the wall, thereby
improving the results. The influence of local averaging with the DMM is also of
interest, but is left for future studies.

In summary, the DMM performs best with the fourth-order commutative test
filter function while the DSM with the same test filter shows the worst
performance. Three-dimensional test filtering improves the results when
compared to two-dimensional filtering. Using a smooth filter function with the
DSM in implicitly filtered LES definitely shows the need for an SFS model for
the resolved SFS stresses. The SSM by Liu et al. (1994) used as a model for the
resolved SFS stresses gives reasonably good results as long as the grid
resolution is fine enough in the inhomogeneous direction. Local averaging of
the model coefficient in the DSM improves the predicted LES results when a
smooth test filter function is used. This simple local averaging method seems to
provide a promising alternative to more involved local models.
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